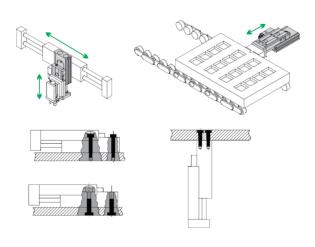
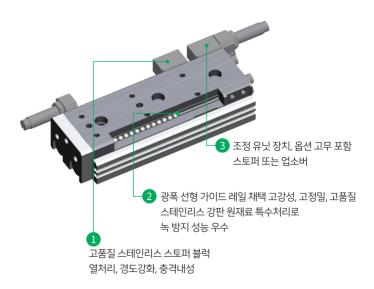


슬라이드 실린더


KAXQ Series


- ↔ 스트로크 조정 유닛 장착으로 스트로크 조절 가능
- ┌── 콤펙트형, 고강성, 고정밀도
- 소형 실린더와 직선 가이드의 조합
- (†) 더블 실린더, 2배의 파워 추력
- 평행도 : 30μm / 수직도 : 50μm
- ☆ 넓은 범위의 유한 순환 가이드 사용, 고강성
- () 마그넷센서 장착 가능

■설치 방식과 사용 특성

다면설치, 간단한 설치, 높은 위치정밀도, 우수한 품질

실린더 구조 특징

슬라이드실린더 KAXQ

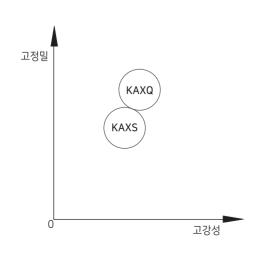
주문형식(예) Order Example

① 실린더 경 기호

6, 8, 12,16, 20, 25

KAXQ 12 M9B S 10 AS T ⑦ 센서 스위치 수 무기입 센서 스위치 2개 센서 스위치 1개 센서 스위치 n개 ⑥ 케이블 타입 표준형 (체인 통과 불가) 무기입 케이블체인 통과 가능 ⑤ 센서 스위치 M9B(N)A 2선/3선 센서 스위치 1M 무기입 센서 스위치 없음 M9B(N)L М9В 2선 센서 스위치 2선/3선 센서 스위치 3M M9B(N)C 2선/3선 센서 스위치 5M M9N 3선 센서 스위치 ※ 표준 센서(M9B/M9N)의 길이는 2M 입니다. ④ 조정 방식 무기입 스트로크 조정 유닛 없음 AS 전진단 러버 스토퍼 АТ 후진단 러버 스토퍼 Α 양단 러버 스토퍼 *BS 전진단 쇼크 업소버 *BT 후진단 쇼크 업소버 *B 양단 쇼크 업소버 ΑB 전진단 스토퍼 + 후진단 업소버 전진단 업소버 + 후진단 스토퍼 ВА ③ 스트로크 기호 10 ~ 150 ※ 스트로크 표 참조 ② 타입 무기입 표준 타입 대칭 타입

실린더 경/mm	스트로크/mm	센서 스위치			
6	10, 20, 30, 40, 50				
8	8 10, 20, 30, 40, 50, 75				
12	10, 20, 30, 40, 50, 75, 100	SW-M9B SW-M9N			
16	10, 20, 30, 40, 50, 75, 100, 125				
20, 25	10, 20, 30, 40, 50, 75, 100, 125, 150				


주문 예시 Order example

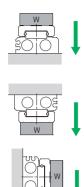
센서 스위치 주문 예시	SW-M9B	2m 길이 단위
완제품 실린더 주문 예시	KAXQ12-50AS-M9B	실린더 경 12, 스트로크 50, 전진단 스트로크에 2m의 M9B 센서 스위치 2개 부착

표준 사양 Specification

	KAXQ6	KAXQ8	KAXQ12	KAXQ16	KAXQ20	KAXQ25				
실린더 경(mm)	ø6x2 ø8	ø8x2 ø11	ø12x2 ø17	ø16x2 ø22	ø20x2 ø28	ø25x2 ø35				
사용유체		공기								
동작방식			이중	작용						
최고사용압력	0,7MPa									
최저사용압력	0.15MPa									
사용온도범위	-10 ~ +60℃ (단, 동결 없을 것)									
피스톤 속도			50~50	0mm/s						
완충			고무 완충	충 (표준)						
스트로크 길이 공차			+1	/ 0						
급유	불요, 급유 필요시 터빈 1호 ISOVG32 오일 사용									
마그넷 센서	M9B, M9N									
접속 구경	M5x0.8 Rc1/8									

선정 참고표 Selection Reference

이론 출력표 Theoretical output table


					← []			단위 :N			
실린더 경	동작 방향	피압 면적	사용 압력 (MPa)								
(mm)	0700	(mm²)	0.2	0.3	0.4	0.5	0.6	0.7			
ø6x2	동작	57	11	17	23	29	34	40			
MOXZ	복귀	42	8	13	17	21	25	29			
a0v2	동작	101	20	30	40	51	61	71			
ø8x2	복귀	75	15	23	30	38	45	53			
40.0	동작	226	45	68	90	113	136	158			
ø12x2	복귀	170	34	51	68	85	102	119			
~16,42	동작	402	80	121	161	201	241	281			
ø16x2	복귀	302	60	91	121	151	181	211			
~20.42	동작	628	126	188	251	314	377	440			
ø20x2	복귀	471	94	141	188	236	283	330			
~2Ev2	동작	982	196	295	393	491	589	687			
ø25x2	복귀	756	151	227	302	378	454	529			

선정 및 계산 Selection and Calculation

형번 선정 단계	계산식, 도표	선정 예시
사용 조건		
설치 형태, 워크물의 모양을 고려하여 사용 저건을 나열	사용 형번 완충 종류 설치 위치 설치 형태 평균 속도 Va(mm/s) 집중 부하 중량 W(kg) ※ 그림1 돌출부 Ln(mm) ※ 그림2	실린더 KAXS16-50 완충 : 열완충 설치 위치 수평 벽면 설치 평균 속도 : Va=300[mm/s] 집중 부하 중량 : W=1[kg] L1=10mm L2=30mm
운동 에너지		L3=30mm
집중 하중의 운동 에너지 E(J)를 구합니다.	$E = \frac{1}{2} \cdot W \left(\frac{V}{1000} \right)^2$ 충격속도 V=1.4·Va ※ 보정계수(대략)	$E = \frac{1}{2} \cdot 1 \left(\frac{420}{1000} \right)^2 = 0.088$ $V = 1.4 \times 300 = 420$
허용 운동 에너지 Ea(J)를 구합니다.	Ea=K·Emax 워크물 설치 계수 K : 그림3 최대 허용 운동 에너지 Emax : 표1	Ea=1·0.11=0.11 E=0.088≤Ea=0.11 이기 때문에 사용 가능
집중 부하의 운동 에너지가 허용 가능한 운동 에너지를 초과하지 않는지 확인합니다.	운동 에너지(E) ≤ 허용 운동 에너지(Ea)	
3 ^{부하율}		
3-1 집중 부하 질량의 부하율		
허용 집중 부하 질량 Wa(kg)를 구합니다. 집중 부하 질량의 부하율 α1을 구합니다.	Wa=K , B , Wmax 설치 계수 K : 그림3 집중 부하 허용 β : 그림4 최대 허용 집중 부하 Wmax : 표2 α1=W/Wa	Wa=1x1x4=4 K=1 β=1 Wmax=4 α1=1/4=0.25
3-2 정적 모멘트 부하율		
정적 모멘트 M(N.m)을 구합니다.	M=Wx9.8(Ln+An)/1000 모멘트 중심 위치 거리 보정치 An : 표3	편향 계산 My 회전 계산 Mr My=1x9.8(10+30)/1000=0.39 Mr=1x9.8(30+10)/1000=0.39 A ₃ =30 A ₆ =10
허용 정적 모멘트 Ma(N.m)를 구합니다.	Ma=K . Y . Mmax 워크물 설치 계수 K : 그림3 허용 모멘트 계수 γ : 그림5 최대 허용 모멘트 Mmax : 표4	May=1 x1 X 15.9=15.9 Mar=15. 9(May와 같은 값) Mymax=15.9 K=1 γ=4
정적 모멘트의 부하율 ɑュ를 구합니다.	α ₂ =M/Ma	$\alpha_2 = 0.39/15.9 = 0.025$ $\alpha_2' = 0.39/15.9 = 0.025$
3-3 동적 모멘트 부하율		베디 게11.84. 변화 게1.84.
동적 모멘트 M(N.m)을 구합니다.	$Me=1/3 \cdot We \ X \ 9.8 \frac{(Ln+An)}{1000}$ 당량질량 $We=\delta \cdot W \cdot V$ $\delta : 완충계수$ 우레탄패드 포함(표준)=4/100 쇼크 업소버 포함 = 1/100 모멘트 중심 위치 거리 보정치 An:표3	벤딩 계산 My Mep=1/3×16.8×9.8× $\frac{(30+10)}{1000}$ =2.2 Mep=1/3×16.8×9.8× $\frac{(30+31)}{1000}$ =3.3 We=4/100x1 x 420=16.8 We=16.8 A ₂ =10 A ₄ =31 Meap=1 x0.7×15.9=11.1 Meay=11.1 (Meap와 같은 값) K=1 Y=0.7
하용 동적 모멘트 Mea(N.m)를 구합니다. 동적 모멘트의 부하율 α₃를 구합니다.	Mea=K . Y . Mmax 워크물 설치 계수 K : 그림3 허용 모멘트 계수γ : 그림5 최대 허용 모멘트 Mmax : 표 4 αঃ=Me/Mea	Mpmax=15.9 α ₃ =2.2/11.1=0.20
3-3 동적 모멘트 부하율		
부하율의 합계가 1을 넘지 않으면 사용 가능	$\Sigma \alpha_n = \alpha_1 + \alpha_2 + \alpha_3 \leqslant 1$	Σ α,=α,+α;+α';+α;+α'; =0,25+0.025+0.025+0.20+0.30=0.80≤1 사용 가능

선정 및 계산 Selection and Calculation

그림1 부하: W(N)

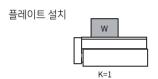
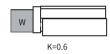
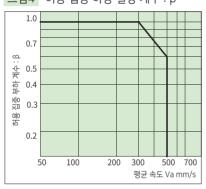


그림2 에어 슬라이드와 하중점 거리(overhang) Ln, 모멘트 중심위치 거리 보정치(An)


	모멘트1 (벤딩 모멘트)	모멘트2 (벤딩 모멘트)	모멘트3 (벤딩 모멘트)
85 84 모멘트	Mp (W) L1 A2	My (Mr (
정적 모멘트	Mep	Mey	

[※] 정적 모멘트: 지구 중심 흡입력에 의한 동적 모멘트: 충돌에 의한


그림3 부하설치계수: K

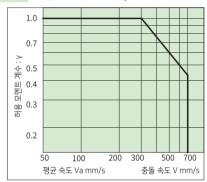

엔드 플레이트 설치

그림4 허용 집중 하중 질량 계수 : β

그림5 허용 모멘트 계수: y

※ 평균 속도로 정적 모멘트를 계산 충돌 속도로 동적 모멘트를 계산

표1 최대 허용 부하 : Wmax(N)

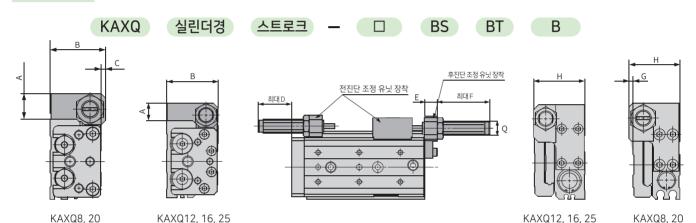
형번	최대 허용 부하
KAXQ6	6
KAXQ8	10
KAXQ12	20
KAXQ16	40
KAXQ20	60
KAXQ25	90

표2 최대 허용 운동 에너지 : Emax(J)

		허용 운동 에너지									
	형번	스트로크	스트로크 조정 유닛 있음								
		조정 유닛 없음	고무 스토퍼	앱소버	금속 스토퍼						
	KAXQ6	0.018	0.015	1.4	0.009						
	KAXQ8	0.027	0.027	0.054	0.013						
-	KAXQ12	0.055	0.055	0.11	0.027						
-	KAXQ16	0.11	0.11	0.22	0.055						
-	KAXQ20	0.16	0.16	0.32	0.080						
-	KAXQ25	0.24	0.24	0.48	0.12						

표3 모멘트 중심 위치 거리 보정치 : An(mm)

	모멘트 중심 위치 거리 보정치(그림2 참조)												
					모멘트 숭	심 위지 거리	나보정지(그	림2 잠조)					
형번		A1, A3											
8년		스트로크(mm)									A4	A5	A6
	10	20	30	40	50	75	100	125	150				
KAXQ6	14.5	14.5	14.5	18.5	18.5	-	-	-	_	1.4	13.5	13.5	6
KAXQ8	16.5	16.5	18.5	20.5	28	28.5	-	-	_	7	16	16	7
KAXQ12	21	21	21	25	25	34	34	_	_	9	19.5	19.5	9
KAXQ16	27	27	27	27	30	33	42.5	42 <u>.</u> 5	_	10.5	24.5	24.5	10.5
KAXQ20	29.5	29.5	29.5	19	33.5	37.5	53.5	55	56.5	14	30	30	14
KAXQ25	35.5	35.5	35.5	35.5	43	43	750	64	64	16.5	37	37	16.5


[※] 스트로크 값은 A2, A4, A5, A6 보정 장치에 영향을 미치지 않습니다.

선정 및 계산 Selection and Calculation

표4 모멘트 중심 위치 거리 보정치 : An(mm)

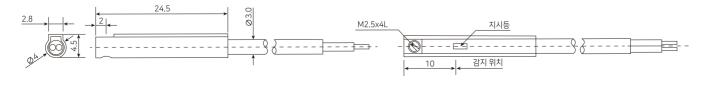
	모멘트1 / 모멘트2 : Mpmax / Mymax							모멘트3 : Mrmax										
형번	번 스트로크 (mm)						스트로크 (mm)											
	10	20	30	40	50	75	100	125	150	10	20	30	40	50	75	100	125	150
KAXQ6	1.4	1.4	1.4	2.8	2.8	-	-	-	-	3 . 5	3 . 5	3 . 5	5.1	5.1	-	-	-	-
KAXQ8	2.0	2.0	2.8	2.0	2.0	2.0	_	-	-	5.1	5.1	6.0	6.9	7.4	7.4	_	_	-
KAXQ12	4.7	4.7	4.7	7.2	7.2	1.5	1.5	-	-	11	11	11	13	13	14	14	_	-
KAXQ16	13	13	13	13	18	23	42	42	-	31	31	31	31	31	36	41	41	-
KAXQ20	19	19	19	19	27	36	84	84	84	47	47	47	47	47	66	75	75	75
KAXQ25	32	32	32	32	52	52	78	140	140	140	81	81	81	81	110	110	130	130

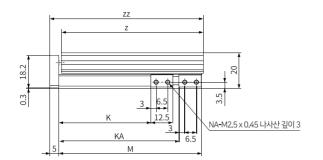
쇼크 업소버

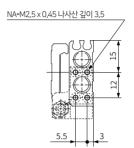
성비	쇼크 업스	노버 장착		^	В		Б	Г	г		- 11	0
형번	전	후	A	В		D	E	F	G	Н	Q	
KAXQ8	20	20	11.5	25	2	23	8	32	2	25	M8 x 1.0	
KAXQ12	18	18	10	29.5	_	18	10	30	_	29.5	M8 x 1.0	
KAXQ16	22	22	12.5	36.5	_	20	12	34	_	36.5	M10 x 1.0	
KAXQ20	35	35	16	46.5	0.5	35	13	54	0.5	46.5	M14 x 1.5	
KAXQ25	35	35	16.5	54.5	-	29	15	52	-	54.5	M14 x 1.5	

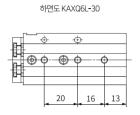
마그넷 센서 스위치

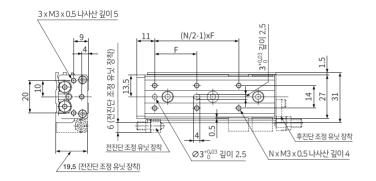
형번 항목	SW-M9B	SW-M9N				
센서접점	전자식 N.O	전자식 N.O				
센서형식	무접점 2선식	무접점 3선식 NPN형				
공급전압	-	5-28V DC				
전압범위	10-28V DC	5-28V DC				
최대센서전류	50mA Max.	100mA Max.				
누설전류	0.3mA Max.	0.01mA Max.				
내부하강전압	2.65V 이하	0.5V/100mA DC				
지시등/색상	지시등 있음/적색 LED	지시등 있음/적색 LED				
표준 케이블 길이	2M	2M				
케이블 규격	2심, 0.22mm² 회색 체인선	2심, 0.22mm² 회색 체인선				
내충격	980m/S ²	980m/S ²				
방수방진등급	IP67	IP67				

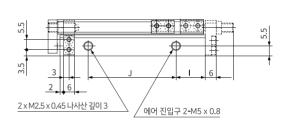

[※] 케이블 길이 1m, 3m, 5m의 주문은 각각 센서 혀식 뒤에 코드 A, L, C를 기입하여 주십시오. 5m 케이블 주문 예) SW-M9B-C

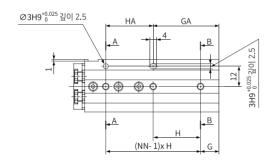


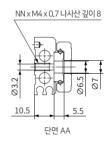


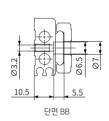

높은 적용 능력 고품질 플렉시블 케이블로 직선 사용과 굴곡 사용에 강하여 체인에 직접 사용 가능

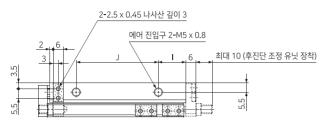


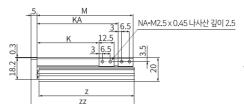

KAXQ6L

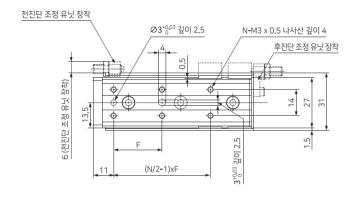


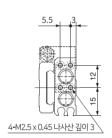


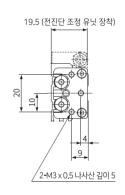


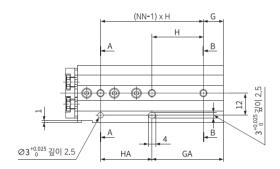


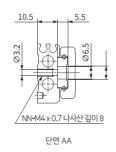


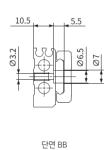



형번	F	N	G	Н	NN	GA	HA	I	J	K	KA	NA	М	Z	ZZ
KAXQ6L-10	22	4	6	23	2	13	16	9	17	21.5	-	4	42	41.5	48
KAXQ6L-20	25	4	13	26	2	13	26	9	27	31.5	-	4	52	51.5	58
KAXQ6L-30	21	6	_	_	3	29	20	9	37	41.5	-	4	62	61.5	68
KAXQ6L-40	26	6	11	28	3	39	28	16	48	51.5	67.5	8	80	79.5	86
KAXQ6L-50	27	6	21	28	3	49	28	9	65	61.5	77.5	8	90	89.5	96

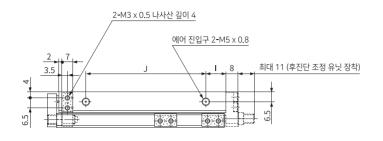

KAXQ6

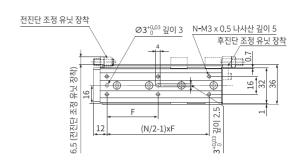


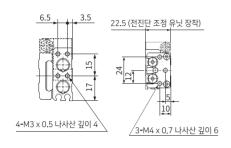


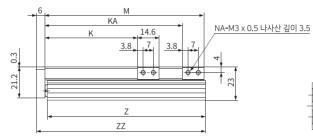

하면도 KAXQ6-30

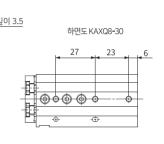
16 13

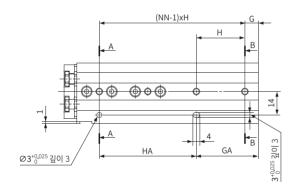

20

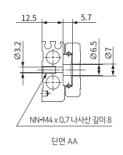


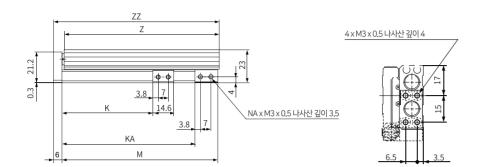


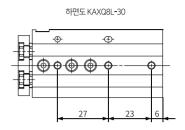


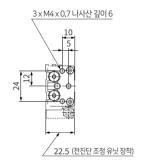

형번	F	N	G	Н	NN	GA	НА	I	J	K	KA	NA	М	Z	ZZ
KAXQ6-10	22	4	6	23	2	13	16	9	17	21.5	_	4	42	41.5	48
KAXQ6-20	25	4	13	26	2	13	26	9	27	31.5	_	4	52	51.5	58
KAXQ6-30	21	6	-	-	3	29	20	9	37	41.5	_	4	62	61.5	68
KAXQ6-40	26	6	11	28	3	39	28	16	48	51.5	67.5	8	80	79.5	86
KAXQ6-50	27	6	21	28	3	49	28	9	65	61.5	77.5	8	90	89.5	96

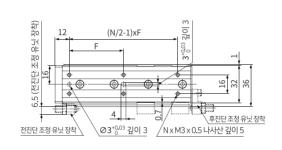


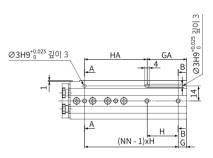


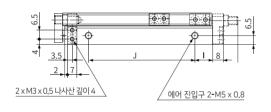


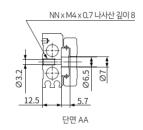


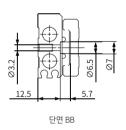


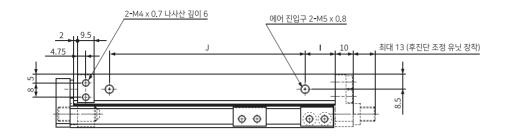

형번	F	N	G	Н	NN	GA	НА	I	J	K	KA	NA	М	Z	ZZ
KAXQ8-10	25	4	7	25	2	13	19	11	17	23.5	_	4	46	45 . 5	53
KAXQ8-20	25	4	14	28	2	14	28	10	28	33.5	_	4	56	55.5	63
KAXQ8-30	26	6	-	-	3	29	27	12	40	43.5	-	4	70	69.5	77
KAXQ8-40	32	6	8	31	3	39	31	14	52	53.5	69.4	8	84	83.5	91
KAXQ8-50	46	6	8	29	4	37	58	13	78	63.5	94.4	8	109	108.5	116
KAXQ8-75	50	6	31	30	4	61	60	12	105	88.5	120.4	8	135	134.5	142

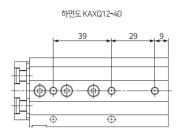

KAXQ8L

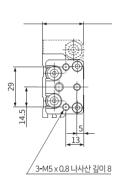


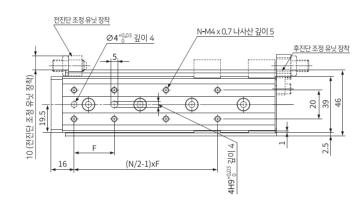


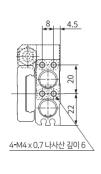




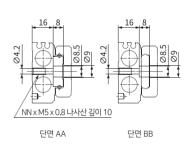


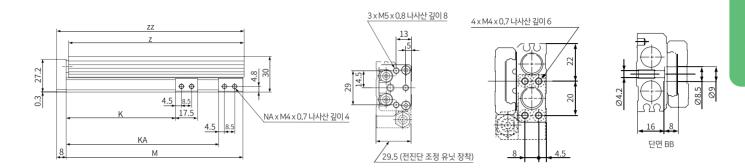


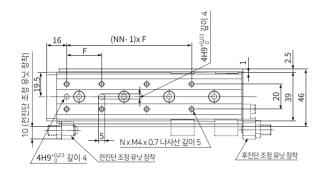


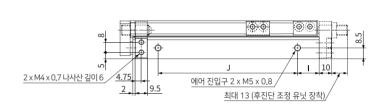

항목	F	N	G	Н	NN	GA	НА	I	J	K	KA	NA	М	Z	ZZ
KAXQ8L-10	25	4	7	25	2	13	19	11	17	23.5	-	4	46	45 . 5	53
KAXQ8L-20	25	4	14	28	2	14	28	10	28	33.5	-	4	56	55.5	63
KAXQ8L-30	26	6	-	_	3	29	27	12	40	43.5	-	4	70	69.5	77
KAXQ8L-40	32	6	8	31	3	39	31	14	52	53.5	69.4	8	84	83.5	91
KAXQ8L-50	46	6	8	29	4	37	58	13	78	63.5	94.4	8	109	108.5	116
KAXQ8L-75	50	6	31	30	4	61	60	12	105	88.5	120.4	8	135	134.5	142

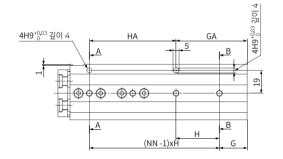


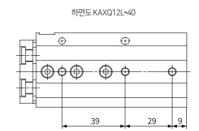


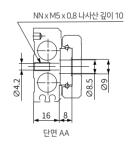


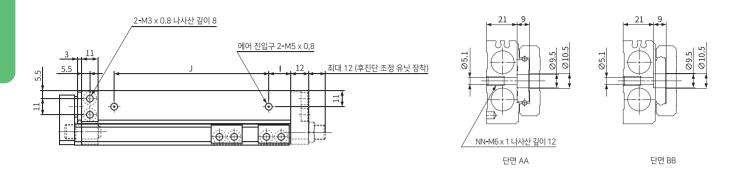


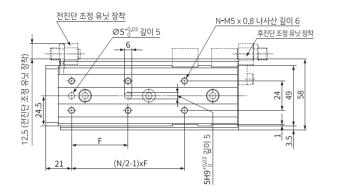


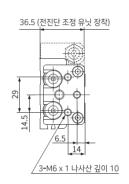

항목	F	N	G	Н	NN	GA	НА	I	J	K	KA	NA	М	Z	ZZ
KAXQ12-10	28	4	18	32	2	18	32	12	34	27	49	8	67	66	76
KAXQ12-20	28	4	18	32	2	18	32	12	34	37	_	4	67	66	76
KAXQ12-30	38	4	20	40	2	20	40	14	42	47	-	4	77	76	86
KAXQ12-40	34	6	_	_	3	38	39	15	58	57	76	8	94	93	103
KAXQ12-50	34	6	9	39	3	48	39	13	70	67	86	8	104	103	113
KAXQ12-75	36	8	23	36	4	59	72	17	110	92	130	8	148	147	157
KAXQ12-100	36	10	12	36	5	84	72	17	135	117	155	8	173	172	182

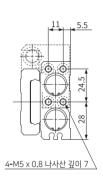

KAXQ12L

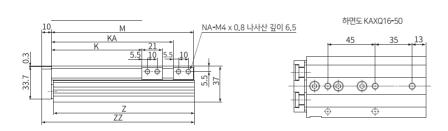


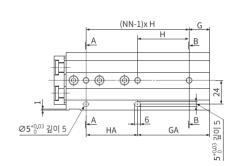


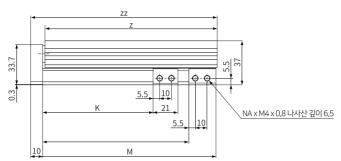


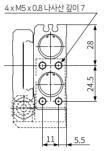


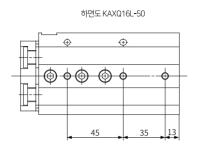


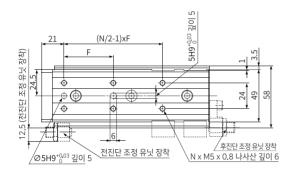

항목	F	N	G	Н	NN	GA	НА	I	J	K	KA	NA	М	Z	ZZ
KAXQ12L-10	28	4	18	32	2	18	32	12	17	27	49	8	67	66	76
KAXQ12L-20	28	4	18	32	2	18	32	12	27	37	-	4	67	66	76
KAXQ12L-30	38	4	20	40	2	20	40	14	37	47	-	4	77	76	86
KAXQ12L-40	34	6	-	-	3	38	39	15	48	57	76	8	94	93	103
KAXQ12L-50	34	6	9	39	3	48	39	13	65	67	86	8	104	103	113
KAXQ12L-75	36	8	23	36	4	59	72	17	65	92	130	8	148	147	157
KAXQ12L-100	36	10	12	36	5	84	72	17	65	117	155	8	173	172	182

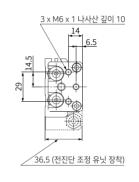


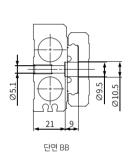


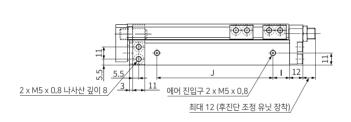


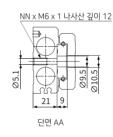


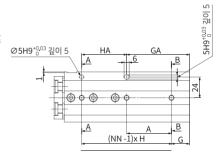

형번	F	N	G	Н	NN	GA	НА	I	J	K	KA	NA	М	Z	ZZ
KAXQ16-10	38	4	18	39	2	18	39	12	40	28	57	8	78	77	89
KAXQ16-20	38	4	18	39	2	18	39	12	40	38	_	4	78	77	89
KAXQ16-30	48	4	19	48	2	19	48	12	50	48	_	4	88	87	99
KAXQ16-40	58	4	19	58	2	19	58	12	60	58	_	4	98	97	109
KAXQ16-50	40	6	-	-	3	48	45	20	68	68	93	8	114	113	125
KAXQ16-75	46	6	21	52	3	73	52	15	105	93	125	8	146	145	157
KAXQ16-100	44	8	36	44	4	80	88	18	145	118	168	8	189	188	200
KAXQ16-125	44	10	17	44	5	105	88	23	165	143	193	8	214	213	225

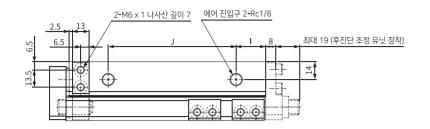

KAXQ16L

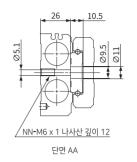


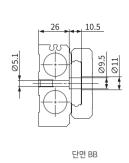


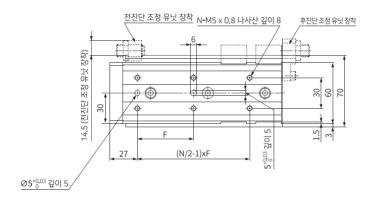


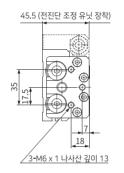


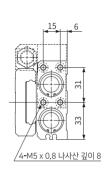


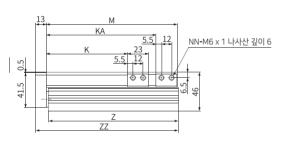


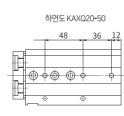


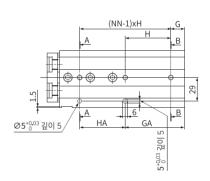


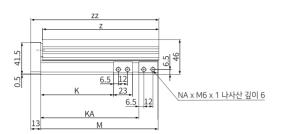

형번	F	N	G	Н	NN	GA	НА		J	K	KA	NA	М	Z	ZZ
KAXQ16L-10	38		18	39	2	18	39	12	40	28	57	8	78	77	89
KANQ TOL-TU	38	4	18	39		18	39	12	40	28	5/	8	/8	//	89
KAXQ16L-20	38	4	18	39	2	18	39	12	40	38	-	4	78	77	89
KAXQ16L-30	48	4	19	48	2	19	48	12	50	48	_	4	88	87	99
KAXQ16L-40	58	4	19	58	2	19	58	12	60	58	-	4	98	97	109
KAXQ16L-50	40	6	-	_	3	48	45	20	68	68	93	8	114	113	125
KAXQ16L-75	46	6	21	52	3	73	52	15	105	93	125	8	146	145	157
KAXQ16L-100	44	8	36	44	4	80	88	18	145	118	168	8	189	188	200
KAXQ16L-125	44	10	17	44	5	105	88	23	165	143	193	8	214	213	225

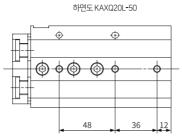


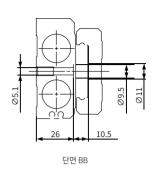


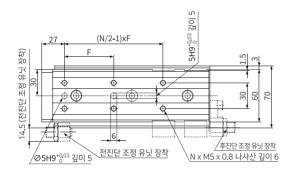


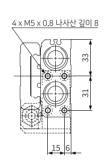


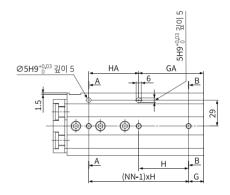


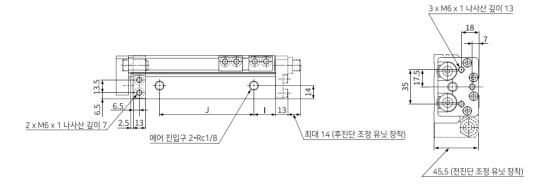


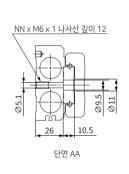


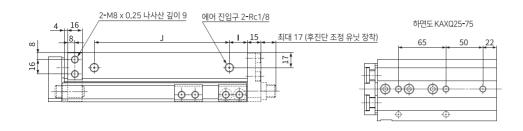

형번	F	N	G	Н	NN	GA	НА	I	J	K	KA	NA	М	Z	ZZ
KAXQ20-10	45	4	22	46	2	18	50	16	46	32	70	8	94	92.5	108
KAXQ20-20	40	4	22	46	2	18	50	16	46	42	70	8	94	92.5	108
KAXQ20-30	48	4	22	46	2	18	50	16	46	52	-	4	94	92.5	108
KAXQ20-40	58	4	22	56	2	22	56	16	56	62	-	4	104	102.5	118
KAXQ20-50	42	6	-	-	3	48	48	18	72	72	98	8	122	120.5	136
KAXQ20-75	55	6	17	56	3	73	56	23	100	97	131	8	155	153.5	169
KAXQ20-100	50	8	18	56	4	74	112	25	155	122	188	8	212	210.5	226
KAXQ20-125	55	8	37	59	4	96	118	18	190	147	216	8	240	238.5	254
KAXQ20-150	62	8	56	62	4	118	124	21	215	172	244	8	268	266.5	282

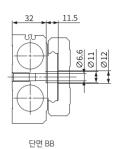

KAXQ20L

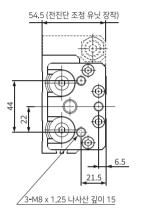


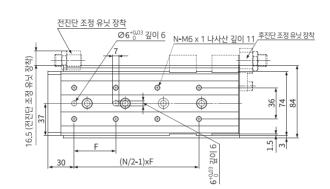


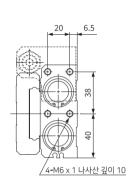


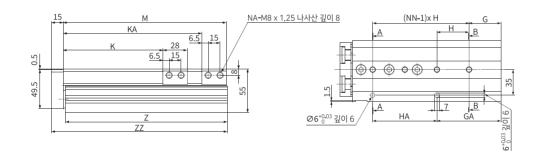


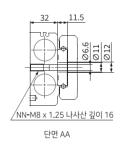


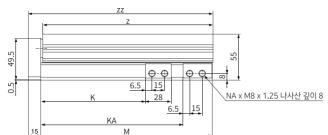


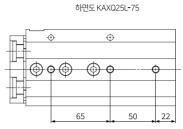

형번	F	N	G	Н	NN	GA	НА	I	J	K	KA	NA	М	Z	ZZ
KAXQ20L-10	45	4	22	46	2	18	50	16	46	32	70	8	94	92.5	108
KAXQ20L-20	40	4	22	46	2	18	50	16	46	42	70	8	94	92.5	108
KAXQ20L-30	48	4	22	46	2	18	50	16	46	52	_	4	94	92.5	108
KAXQ20L-40	58	4	22	56	2	22	56	16	56	62	_	4	104	102.5	118
KAXQ20L-50	42	6	-	-	3	48	48	18	72	72	98	8	122	120.5	136
KAXQ20L-75	55	6	17	56	3	73	56	23	100	97	131	8	155	153.5	169
KAXQ20L-100	50	8	18	56	4	74	112	25	155	122	188	8	212	210.5	226
KAXQ20L-125	55	8	37	59	4	96	118	18	190	147	216	8	240	238.5	254
KAXQ20L-150	62	8	56	62	4	118	124	21	215	172	244	8	268	266.5	282

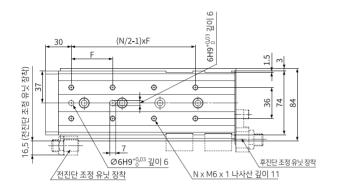

구 동 기 기

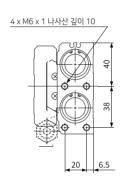


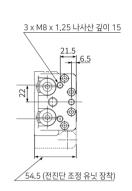


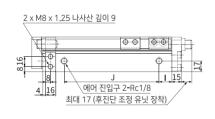


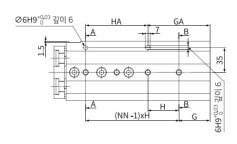


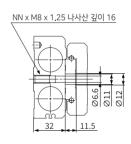

형번	F	N	G	Н	NN	GA	НА	I	J	K	KA	NA	М	Z	ZZ
KAXQ25-10	55	4	23	55	2	23	55	16	56	36.5	77.5	8	107	105.5	123
KAXQ25-20	46	4	23	55	2	23	55	16	56	46.5	77.5	8	107	105.5	123
KAXQ25-30	55	4	23	55	2	23	55	16	56	56.5	_	4	107	105.5	123
KAXQ25-40	65	4	23	65	2	23	65	16	66	66.5	-	4	117	115.5	133
KAXQ25-50	75	4	32	80	2	32	80	16	90	76.5	111.5	8	141	139.5	157
KAXQ25-75	60	6	-	-	3	72	65	31	100	101.5	136.5	8	166	164.5	182
KAXQ25-100	48	8	44	44	4	88	88	20	150	126.5	175.5	8	205	203.5	221
KAXQ25-125	60	8	31	66	4	97	132	18	205	151.5	228.5	8	258	256.5	274
KAXQ25-125	65	8	56	66	4	122	132	18	230	176.5	253.5	8	283	281.5	299


KAXQ25L









항목	F	N	G	Н	NN	GA	НА	I	J	K	KA	NA	М	Z	ZZ
KAXQ25L-10	55	4	23	55	2	23	55	16	56	36.5	77.5	8	107	105.5	123
KAXQ25L-20	46	4	23	55	2	23	55	16	56	46.5	77.5	8	107	105.5	123
KAXQ25L-30	55	4	23	55	2	23	55	16	56	56.5	_	4	107	105.5	123
KAXQ25L-40	65	4	23	65	2	23	65	16	66	66.5	-	4	117	115.5	133
KAXQ25L-50	75	4	32	80	2	32	80	16	90	76.5	111.5	8	141	139.5	157
KAXQ25L-75	60	6	-	-	3	72	65	31	100	101.5	136.5	8	166	164.5	182
KAXQ25L-100	48	8	44	44	4	88	88	20	150	126.5	175.5	8	205	203.5	221
KAXQ25L-125	60	8	31	66	4	97	132	18	205	151.5	228.5	8	258	256.5	274
KAXQ25L-125	65	8	56	66	4	122	132	18	230	176.5	253.5	8	283	281.5	299

대한민국의 케이레봇이 높은 품질과 기술로 세계로 뻗어나갑니다.

(주)케이레봇

경기도 부천시 원미구 평천로 655, 부천테크노파크 403동 303호 TEL. 032-325-2565 | FAX. 032-325-2561 | www.krevot.com